"Cardiovascular and Circulatory Applications
Research has indicated that bromelain prevents aggregation of human blood platelets in vivo and in vitro, prevents or minimizes the severity of angina pectoris and transcient ischemic attacks (TIA), is useful in the prevention and treatment of thrombosis and thrombophlebitis, may break down cholesterol plaques, and exerts a potent fibrinolytic activity. If administered for prolonged time periods, bromelain also exerts an anti-hypertensive effect in experimental animals.2,47
Administration of 400-1000 mg/day of bromelain to 14 patients with angina pectoris resulted in the disappearance of symptoms in all patients within 4 to 90 days.48 Similar results have been observed in patients taking between 500-700 mg/day of bromelain. After discontinuing bromelain, angina attacks reappear after a variable period of time, often triggered by stressful experiences.2
A drastic reduction in the incidence of coronary infarct after administration of potassium and magnesium orotate along with 120-400 mg of bromelain per day has also been reported.49
In a study involving 73 patients with acute thrombophlebitis, bromelain, in addition to analgesics, was shown to decrease all symptoms of inflammation; including, pain, edema, tenderness, skin temperature, and disability.40
The ability of bromelain to influence these conditions may be due to its ability to breakdown fibrinous plaques. Bromelain has been shown to dissolve arteriosclerotic plaque in rabbit aorta in vivo and in vitro.2 It is likely that bromelain also increases vessel wall permeability to oxygen and nutrients while increasing blood fluidity, both of which aid in these conditions.
Toxicity, Side Effects and Allergic Reactions
Bromelain is considered to have very low toxicity, with an LD50 greater than 10g/kg. Toxicity tests on dogs, with increasing levels of bromelain up to 750 mg/kg administered daily, showed no toxic effects after six months. Dosages of1.5 g/kg/day administered to rats show no carcinogenic or teratogenic effects. 51
In human clinical tests, side effects have not been observed. Bromelain supplementation up to 460 mg has been shown to have no effect on heart rate or blood pressure; however, increasing doses up to 1840 mg have been shown to increase the heart rate proportionately. In some cases an increase of up to 80% of the baseline has been reported, which may be a result of bromelain's influence on IL-1 and TNF production. Maximum effects were seen at 2 hours but some residual effect remained at 24 hours. At doses above 700 mg, palpitations and subjective discomfort have been reported. Blood pressure changes have not been demonstrated in humans at any dosage level.52
The allergenic potential of proteolytic enzymes should not be underestimated, for they cause, in particular, IgE-mediated respiratory allergies of both the immediate type and the late-phase of immediate type with predominantly respiratory symptoms. Allergy to bromelain has been reported in workers of a blood-grouping laboratory, and investigation indicates that (1) bromelain is a strong sensitizer, (2) sensitization usually occurs due to inhalation and not to ingestion, (3) bromelain allergy is occupationally acquired, and adequate precautions are necessary.53 The risk of sensitization to enzymes due to inhalation as a result of occupational exposure is very high (up to 50%).54
Bromelain has been shown to cross-react with the sera in about 28% of persons with IgE allergic response to honeybee venom.55 Bromelain, along with horseradish peroxidase and ascorbate oxidase are recognized by the IgE of sera from patients who are hypersensitive to olive tree pollen.56
Bromelain and papain, due to their use as a meat tenderizer and to clarify beer, are considered as potential ingestive allergens and may represent an unrecognized cause of an allergic reaction following a meal. As with other food substances, a small segment of the population, particularly those with a sensitivity to pineapple, may be sensitive to oral supplementation with bromelain. As contact allergens, the enzymes play a minor role; however, it is thought that skin testing with isolated proteases like bromelain may induce systemic reactions in susceptible individuals, even at very high dilution.53,57
Indications for the Use of Bromelain
There are several compelling reasons for supplementation with oral bromelain.
1. It inhibits blood platelet aggregation, favorably modulates prostaglandin formation and minimizes risk of coronary atherosclerotic disease.
2. It continues to provide a desired physiological action for as long as it is administered, with no evidence indicating that a tolerance develops.
3. It is considered to be non-toxic and lacking in side effects, so it can be used without concern in doses from 200 to 2000 mg for prolonged periods of time.
4. It is a protein and seems to be as easily metabolized as other dietary proteins.
5. It is well absorbed and seems to have greater therapeutic impact when administered orally as opposed to intravenously
6. While effective for inflammation and injury, it is even more effective if administered prior to a traumatic event, i.e. surgery or athletic competition.
7. It seems to enhance the absorption of and improve the action of other substances when they are administered in combination.
8. Because of its impact on the cytokine system, particularly IL-1 and TNF, which stimulate fever and acute phase response, and its demonstrated ability to increase the heart rate, bromelain may assist in generating an acute-stage healing response.
Bromelain has a wide range of conditions for which it has well documented therapeutic efficacy (see Table 4).
Dosage and Prescription Instructions
Available research does not demonstrate an enhanced efficacy of bromelain when it is administered between meals. It is generally recommended that bromelain be taken away from food unless it is being used as a digestive aid, because it is believed that otherwise, it will tend to act as a digestive enzyme and its therapeutic benefit may be diminished. While this may in fact be the case, the clinical studies conducted on bromelain have not followed this protocol.
Bromelain has shown therapeutic benefits in doses as small as 160 mg/day; however, it is thought that, for most conditions, best results occur starting at a dose of 750-1000 mg/day. Most research on bromelain has been done utilizing divided doses, usually four per day, and findings indicate that results are dose-dependent. See Table 5 for a summary of prescription instructions.
Conclusion
Bromelain has been used for a variety of clinical applications for more than 35 years. Although its mechanisms of action has not been completed resolved, bromelain has demonstrated a beneficial effect on the kinin system, the coagulation cascade, the cytokine system, and prostaglandin synthesis. Bromelain is believed to enhance the absorption of flavonoids and has been shown to increase absorption of glucosamine, so bromelain supplemention should be considered when these nutrients are given. It may also enhance absorption and utilization of many other substances; however, to date research in this area has focused primarily on antibiotics. Bromelain has been shown to exert a beneficial effect at doses as low as 160 mg/day, however, there is a general consensus among researchers that the best results occur when bromelain is given in doses above 500 mg per day and that results improve in a dose-dependent manner with higher levels of bromelain supplementation. Bromelain has been demonstrated to be well absorbed after an oral dose and has been shown to be safe at high doses for prolonged periods of time. For the conditions discussed in this review, bromelain has shown itself to be an effective supplement.
References
1. Rowan AD, Buttle DJ, Barrett AJ. The cysteine proteinases of the pineapple plant. Biochem J 1990;266:869-875.
2. Taussig SJ, Nieper HA. Bromelain: its use in prevention and treatment of cardiovascular disease, present status. J IAPM 1979;6:139-151.
3. Harrach T, Eckert K, Schulze-Forster K, et al. Isolation and partial characterization of basic proteinases from stem bromelain. J Protein Chem 1995;14:41-52.
4. Jeung A. Encyclopedeia of Common Natural Ingredients Used in Foods, Drugs, and Cosmetics. New York, NY: John Wiley & Sons;1980:74-76.
5. White RR, Crawley FE, Vellini M, et al. Bioavailability of 125I bromelain after oral administration to rats. Biopharm Drug Dispos 1988;9:397-403.
6. Heinicke RM, Van der Wal M, Yokoyama MM. Effect of bromelain on human platelet aggrega tion. Experientia 1972;28:844-845.
7. Morita AH, Uchida DA, Taussig SJ. Chromato graphic fractionation and characterization of the active platelet aggregation inhibitory factor from bromelain. Arch Inter Phar Ther 1979;239:340-350.
8. Livio M, Bertoni MP, De Gaetano G, et al. Effect of bromelain on fibrinogen level, prothrombin complex factors and platelet aggregation in the rat - A preliminary report. Drugs Expt Clin Res 1978;4:49-53.
9. De-Giuli M, Pirotta F. Bromelain: interaction with some protease inhibitors and rabbit specific antiserum. Drugs Exp Clin Res 1978;4:21-23.
10. Inoue K, Motonaga A, Dainaka J, et al. Effect of etodolac on prostaglandin E2 biosynthesis, active oxygen generation and bradykinin formation. Prostaglandins Leukot Essent Fatty Acids 1994;51:457-462.
11. Uhlig G, Seifert J. The effect of proteolytic enzymes (traumanase) on posttraumatic edema. Fortschr Med 1981;99:554-556.
12. Vellini M, Desideri D, Milanese A, et al. Possible involvement of eicosanoids in the pharmacological action of bromelain. Arzneimittelforschung 1986;36:110-112.
13. Yonehara N, Shibutani T, Inoki R. Contribution of substance P to heat-induced edema in rat paw. J Pharmacol Exp Ther 1987;242:1071-1076.
14. Kumakura S, Yamashita M, Tsurufuji S. Effect of bromelain on kaolin-induced inflammation in rats. Eur J Pharmacol 1988;150:295-301.
15. Uchida Y, Katori M. Independent consumption of high and low molecular weight kininogens in vivo. Adv Exp Med Biol 1986;198:113-118.
16. Taussig SJ, Batkin S. Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application. An update. J Ethnopharmacol 1988;22:191-203.
17. Schafer A, Adelman B. Plasmin inhibition of platelet function and of arachidonic acid metabolism. J Clin Invest 1985;75:456-461.
18. Felton GE. Fibrinolytic and antithrombotic action of bromelain may eliminate thrombosis in heart patients. Med Hypotheses 1980;6:1123-1133.
19. Gerard G. Anti-cancer therapy with bromelain. Agress 1972;3:261-274.
20. Nieper HA. A program for the treatment of cancer. Krebs 1974;6:124-127.
21. Taussig SJ, Szekerczes J, Batkin S. Inhibition of tumor growth in vitro by bromelain, an extract of the pineapple plant (Ananas comosus). Planta Med 1985;6:538-539.
22. Batkin S, Taussig SJ, Szekerezes J. Antimetastatic effect of bromelain with or without its proteolytic and anticoagulant activity. J Cancer Res Clin Oncol 1988;114:507.
23. Desser L, Rehberger A, Paukovits W. Proteolytic enzymes and amylase induce cytokine production in human peripheral blood mononuclear cells in vitro. Cancer Biother 1994;9:253-263.
24. Desser L, Rehberger A. Induction of tumor necrosis factor in human peripheral-blood mononuclear cells by proteolytic enzymes. Oncology 1990;47:475-477.
25. Desser L, Rehberger A, Kokron E, et al. Cytokine synthesis in human peripheral blood mononuclear cells after oral administration of polyenzyme preparations. Oncology 1993;50:403-407.
26. Munzig E, Eckert K, Harrach T, et al. Bromelain protease F9 reduces the CD44 mediated adhesion of human peripheral blood lymphocytes to human umbilical vein endothelial cells. FEBS Lett 1995;351:215-218.
27. Houck JC, Chang CM, Klein G. Isolation of an effective debriding agent from the stems of pineapple plants. Int J Tissue React 1983;5:125-134.
28. Klaue P, Dilbert G, Hinke G, et al. Tier-experimentelle untersuchungen zur enzymatischen lokalbehandlung subdermaler verbrennungen mit bromelain. Therapiewoche 1979;29:796-799.
29. Ahle NW, Hamlet MP. Enzymatic frostbite eschar debridement by bromelain. Ann Emerg Med 1987;16:1063-1065.
30. Moss JN, Frazier CV, Martin GJ. Bromelains, the pharmacology of the enzymes. Arch Int Pharmacodyn 1963;145:168.
31. Tinozzi S, Venegoni A. Effect of bromelain on serum and tissue levels of amoxycillin. Drugs Expt Clin Res 1978;4:39-44.
32. Luerti M, Vignali ML. Influence of bromelain on penetration of antibiotics in uterus, salpinx and ovary. Drugs Expt Clin Res 1978;4:45-48.
33. Renzinni G, Varengo M. The absorption of tetracyclin in conbination with bromelain by oral application. Arzneim-Forsch 1972;22:410-412.
34. Neubauer RA. A plant protease for potentiation of and possible replacement of antibiotics. Exp Med Surg 1961;19:143-160
35. Ryan RE. A double-blind clinical evaluation of bromelains in the treatment of acute sinusitis. Headache 1967;7:13-17.
36. Hunter RG, Henry GW, Heinicke RM. The action of papain and bromelain on the uterus. Am J Ob Gyn 1957;73:867-873.
37. Suzuki K, Niho T, Yamada H, et al. [Experimental study of the effects of bromelain on the sputum consistency in rabbits]. Nippon Yakurigaku Zasshi 1983;81:211-216.
38. Knill-Jones RP, Pearce H, Batten J, et al. Comparative trial of Nutrizym in chronic pancreatic insufficiency. Brit Med J 1970;4:21.
39. Balakrishnan V, Hareendran A, Sukumaran Nair C. Double-blind cross-over trial of an enzyme preparation in pancreatic steatorrhea. J Asso Phys Ind 1981;29:207-209.
40. Seligman B. Bromelain-an anti-inflammatory agent?thrombophlebitis. No toxicity. Angiology 1962;13:508-510.
41. Felton G. Does Kinin released by pineapple stem bromelain stimulate production of prostaglandin E1-like compound. Haw Med J 1976;2:39-47.
42. Mynott TL, Luke RK, Chandler DS. Oral administration of protease inhibits enterotoxigenic Escherichia coli receptor activity in piglet small intestine. Gut 1996;38:28-32.
43. Blonstein JL. Control of swelling in boxing injuries. Practitioner 1960;185:78.
44. Tassman GC, Zafran JN, Zayon GM. Evaluation of a plant proteolytic enzyme for the control of inflammation and pain. J Dent Med 1964;19:73-77.
45. Tassman GC, Zafran JN, Zayon GM. A double-blind crossover study of a plant proteolytic enzyme in oral surgery. J Dent Med 1965;20:51-54.
46. Masson M. Bromelain in blunt injuries of the locomotor system. A study of observed applications in general practice. Fortschr Med 1995;113:303-306.
47. Giacca S. Clinical experiments with bromelain in peripheral venous diseases and chronic bronchitic states. Minerva Med 1965;56:Suppl.104.
48. Nieper HA. Effect of bromelain on coronary heart disease and angina pectoris. Acta Med Empirica 1978;5:274-278.
49. Nieper HA. Decrease of the incidence of coronary heart infarct by Mg- and K-orotate and bromelain. Acta Med Empirica 1977;12:614-618.
50. Seligman B. Oral bromelains as adjuncts in the treatment of acute thrombophlebitis. Angiology 1969;20:22-26.
51. Taussig SJ, Yokoyama MM, Chinen N, et al. Bromelain: A proteolytic enzyme and its clinical application. HirJ Med Sci 1975;24:185-193.
52. Gutfreund A, Taussig S, Morris A. Effect of oral bromelain on blood pressure and heart rate of hypertensive patients. Haw Med Jour 1978;37:143-146.
53. Gailhofer G, Wilders-Truschnig M, Smolle J, Ludvan M. Asthma caused by bromelain: an occupational allergy. Clin Allergy 1988;18:445-450.
54. Chida T. A study on dose-response relationship of occupational allergy in a pharmaceutical plant. Sangyo Igaku 1986;28:77-86.
55. Tretter V, Altmann F, Kubelka V, et al. Fucose alpha 1,3-linked to the core region of glycoprotein N-glycans creates an important epitope for IgE from honeybee venom allergic individuals. Int Arch Allergy Immunol 1993;102:259-266.
56. Batanero E, Villalba M, Monsalve RI, et al. Cross-reactivity between the major allergen from olive pollen and unrelated glycoproteins: evidence of an epitope in the glycan moiety of the allergen. J Allergy Clin Immunol 1996;97:1264-1271.
57. Wuthrich B. Proteolytic enzymes: potential allergens for the skin and respiratory tract?